Skip to main content
Home
Pimath

Main navigation

  • Home
User account menu
  • Log in

Breadcrumb

  1. Home

Derivative of Sine and Cosine

Profile picture for user Pimath
By Pimath, 7 June 2025

Let us see how to calculate the derivative of the sine and cosine functions, using the limit of the difference quotient and fundamental trigonometric identities. We demonstrate step by step that the derivative of \( \sin(x) \) is \( \cos(x) \) and that of \( \cos(x) \) is \( -\sin(x) \), justifying each step in a clear and formal manner.


Table of Contents

  • Derivative of the Sine Function
  • Derivative of the Cosine Function

Derivative of the Sine Function

We calculate the derivative of the function \( f(x) = \sin(x) \) as the limit of the difference quotient:

\[ f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} \] \[ = \lim_{h \to 0} \frac{\sin(x_0 + h) - \sin(x_0)}{h} \]

We use the trigonometric identity for the difference of sines:

\[ \sin(x_0 + h) - \sin(x_0) = 2 \sin\left(\frac{h}{2}\right) \cos\left(x_0 + \frac{h}{2}\right) \]

Substituting this identity into the difference quotient, we obtain:

\begin{align} \frac{\sin(x_0 + h) - \sin(x_0)}{h} &= \frac{2 \sin\left(\frac{h}{2}\right) \cos\left(x_0 + \frac{h}{2}\right)}{h} \\ &= \frac{\sin\left(\frac{h}{2}\right) \cos\left(x_0 + \frac{h}{2}\right)}{\frac{h}{2}} \end{align}

We know that:

\[ \lim_{h \to 0} \frac{\sin(\frac{h}{2})}{\frac{h}{2}} = 1 \quad \text{and} \quad \lim_{h \to 0} \cos\left(x_0 + \frac{h}{2}\right) = \cos(x_0). \]

Therefore:

\[ \lim_{h \to 0} \frac{\sin(x_0 + h) - \sin(x_0)}{h} = \cos(x_0) \]

The derivative of the function \( \sin(x) \) is therefore:

\[ f'(x) = \cos(x) \quad , \quad \forall x \in \mathbb{R} \]

Derivative of the Cosine Function

Now we calculate the derivative of the function \( g(x) = \cos(x) \) as the limit of the difference quotient:

\[ g'(x_0) = \lim_{h \to 0} \frac{g(x_0 + h) - g(x_0)}{h} \] \[ = \lim_{h \to 0} \frac{\cos(x_0 + h) - \cos(x_0)}{h} \]

We use the trigonometric identity for the difference of cosines:

\[ \cos(x_0 + h) - \cos(x_0) = -2 \sin\left(x_0 + \frac{h}{2}\right) \sin\left(\frac{h}{2}\right) \]

Substituting this identity into the difference quotient, we obtain:

\begin{align} \frac{\cos(x_0 + h) - \cos(x_0)}{h} &= \frac{-2 \sin\left(x_0 + \frac{h}{2}\right) \sin\left(\frac{h}{2}\right)}{h} \\ &= \frac{-\sin\left(x_0 + \frac{h}{2}\right) \sin\left(\frac{h}{2}\right)}{\frac{h}{2}}\end{align}

We know that:

\[ \lim_{h \to 0} \frac{\sin(\frac{h}{2})}{\frac{h}{2}} = 1 \quad \text{and} \quad \lim_{h \to 0} \sin\left(x_0 + \frac{h}{2}\right) = \sin(x_0). \]

Therefore:

\[ \lim_{h \to 0} \frac{\cos(x_0 + h) - \cos(x_0)}{h} = -\sin(x_0) \]

The derivative of the function \( g(x) = \cos(x) \) is therefore:

\[ g'(x) = -\sin(x) \quad , \quad \forall x \in \mathbb{R} \]


Your feedback is important to us! Leave a comment and help us improve this content. Thank you!

Feedback

Support us with a Like:
Or, share:

Tags

  • Mathematical Analysis 1

Support us with a Like:
Or, share:

Copyright © 2025 | Pimath | All Rights Reserved