Skip to main content
Home
Pimath

Main navigation

  • Home
User account menu
  • Log in

Breadcrumb

  1. Home

Fundamental Rules of Differentiation

Profile picture for user Pimath
By Pimath, 17 July 2025

This table collects the fundamental rules of differentiation.

Elementary Derivatives

Function \( f(x) \)Derivative \( f'(x) \)
\( c \)\( 0 \)
\( x \)\( 1 \)
\( x^n \)\( nx^{n-1} \)
\( e^x \)\( e^x \)
\( \ln(x) \)\( \displaystyle\frac{1}{x} \)
\( \sqrt{x} \)\( \displaystyle\frac{1}{2\sqrt{x}} \)
\( x^x \)\( x^x (1 + \ln x) \)
\( |x| \)\( \displaystyle\frac{x}{|x|} \), \( x \neq 0 \)
\( \ln|x| \)\( \displaystyle\frac{1}{x} \), \( x \neq 0 \)
\( \text{sgn}(x) \)\( 0 \), \( x \neq 0 \)

Differentiation Rules

OperationDerivative
\( [f(x) \pm g(x)]' \)\( f'(x) \pm g'(x) \)
\( [f(x) \cdot g(x)]' \)\( f'(x)g(x) + f(x)g'(x) \)
\( \left[\displaystyle\frac{f(x)}{g(x)}\right]' \)\( \displaystyle\frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)} \)
\( [f(g(x))]' \)\( f'(g(x)) \cdot g'(x) \)

Trigonometric Functions

\( f(x) \)\( f'(x) \)
\( \sin(x) \)\( \cos(x) \)
\( \cos(x) \)\( -\sin(x) \)
\( \tan(x) \)\( \sec^2(x) \)
\( \cot(x) \)\( -\csc^2(x) \)
\( \sec(x) \)\( \sec(x)\tan(x) \)
\( \csc(x) \)\( -\csc(x)\cot(x) \)
\( \sin^2(x) \)\( 2\sin(x)\cos(x) \)
\( \cos^2(x) \)\( -2\cos(x)\sin(x) \)

Inverse Trigonometric Functions

\( f(x) \)\( f'(x) \)
\( \arcsin(x) \)\( \displaystyle\frac{1}{\sqrt{1 - x^2}} \)
\( \arccos(x) \)\( \displaystyle -\frac{1}{\sqrt{1 - x^2}} \)
\( \arctan(x) \)\( \displaystyle\frac{1}{1 + x^2} \)

Hyperbolic Functions

\( f(x) \)\( f'(x) \)
\( \sinh(x) \)\( \cosh(x) \)
\( \cosh(x) \)\( \sinh(x) \)
\( \tanh(x) \)\( \text{sech}^2(x) \)
\( \text{arsinh}(x) \)\( \displaystyle\frac{1}{\sqrt{x^2 + 1}} \)
\( \text{arcosh}(x) \)\( \displaystyle\frac{1}{\sqrt{x^2 - 1}} \)
\( \text{artanh}(x) \)\( \displaystyle\frac{1}{1 - x^2} \)

Exponentials and Logarithms

\( f(x) \)\( f'(x) \)
\( a^x \)\( a^x \ln(a) \)
\( \log_a(x) \)\( \displaystyle\frac{1}{x \ln a} \)

Functions with Variable Exponents

\( f(x) \)\( f'(x) \)
\( x^\alpha \)\( \alpha x^{\alpha - 1} \)
\( a^{g(x)} \)\( a^{g(x)} \cdot \ln(a) \cdot g'(x) \)
\( \ln(g(x)) \)\( \displaystyle\frac{g'(x)}{g(x)} \)
\( \ln|g(x)| \)\( \displaystyle\frac{g'(x)}{g(x)} \) with \( g(x) \neq 0 \)

Derivatives of Discontinuous or Piecewise Functions

\( f(x) \)\( f'(x) \)
\( \lfloor x \rfloor \)Not differentiable at integer points
\( \lceil x \rceil \)Not differentiable at integer points
\( |f(x)| \)\( \displaystyle\frac{f(x)}{|f(x)|} \cdot f'(x) \), where defined

Your feedback is important to us! Leave a comment and help us improve this content. Thank you!

Feedback

Support us with a Like:
Or, share:

Tags

  • Mathematical Analysis 1

Support us with a Like:
Or, share:

Copyright © 2025 | Pimath | All Rights Reserved