This table collects the fundamental rules of differentiation.
Elementary Derivatives
Function \( f(x) \) | Derivative \( f'(x) \) |
---|---|
\( c \) | \( 0 \) |
\( x \) | \( 1 \) |
\( x^n \) | \( nx^{n-1} \) |
\( e^x \) | \( e^x \) |
\( \ln(x) \) | \( \displaystyle\frac{1}{x} \) |
\( \sqrt{x} \) | \( \displaystyle\frac{1}{2\sqrt{x}} \) |
\( x^x \) | \( x^x (1 + \ln x) \) |
\( |x| \) | \( \displaystyle\frac{x}{|x|} \), \( x \neq 0 \) |
\( \ln|x| \) | \( \displaystyle\frac{1}{x} \), \( x \neq 0 \) |
\( \text{sgn}(x) \) | \( 0 \), \( x \neq 0 \) |
Differentiation Rules
Operation | Derivative |
---|---|
\( [f(x) \pm g(x)]' \) | \( f'(x) \pm g'(x) \) |
\( [f(x) \cdot g(x)]' \) | \( f'(x)g(x) + f(x)g'(x) \) |
\( \left[\displaystyle\frac{f(x)}{g(x)}\right]' \) | \( \displaystyle\frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)} \) |
\( [f(g(x))]' \) | \( f'(g(x)) \cdot g'(x) \) |
Trigonometric Functions
\( f(x) \) | \( f'(x) \) |
---|---|
\( \sin(x) \) | \( \cos(x) \) |
\( \cos(x) \) | \( -\sin(x) \) |
\( \tan(x) \) | \( \sec^2(x) \) |
\( \cot(x) \) | \( -\csc^2(x) \) |
\( \sec(x) \) | \( \sec(x)\tan(x) \) |
\( \csc(x) \) | \( -\csc(x)\cot(x) \) |
\( \sin^2(x) \) | \( 2\sin(x)\cos(x) \) |
\( \cos^2(x) \) | \( -2\cos(x)\sin(x) \) |
Inverse Trigonometric Functions
\( f(x) \) | \( f'(x) \) |
---|---|
\( \arcsin(x) \) | \( \displaystyle\frac{1}{\sqrt{1 - x^2}} \) |
\( \arccos(x) \) | \( \displaystyle -\frac{1}{\sqrt{1 - x^2}} \) |
\( \arctan(x) \) | \( \displaystyle\frac{1}{1 + x^2} \) |
Hyperbolic Functions
\( f(x) \) | \( f'(x) \) |
---|---|
\( \sinh(x) \) | \( \cosh(x) \) |
\( \cosh(x) \) | \( \sinh(x) \) |
\( \tanh(x) \) | \( \text{sech}^2(x) \) |
\( \text{arsinh}(x) \) | \( \displaystyle\frac{1}{\sqrt{x^2 + 1}} \) |
\( \text{arcosh}(x) \) | \( \displaystyle\frac{1}{\sqrt{x^2 - 1}} \) |
\( \text{artanh}(x) \) | \( \displaystyle\frac{1}{1 - x^2} \) |
Exponentials and Logarithms
\( f(x) \) | \( f'(x) \) |
---|---|
\( a^x \) | \( a^x \ln(a) \) |
\( \log_a(x) \) | \( \displaystyle\frac{1}{x \ln a} \) |
Functions with Variable Exponents
\( f(x) \) | \( f'(x) \) |
---|---|
\( x^\alpha \) | \( \alpha x^{\alpha - 1} \) |
\( a^{g(x)} \) | \( a^{g(x)} \cdot \ln(a) \cdot g'(x) \) |
\( \ln(g(x)) \) | \( \displaystyle\frac{g'(x)}{g(x)} \) |
\( \ln|g(x)| \) | \( \displaystyle\frac{g'(x)}{g(x)} \) with \( g(x) \neq 0 \) |
Derivatives of Discontinuous or Piecewise Functions
\( f(x) \) | \( f'(x) \) |
---|---|
\( \lfloor x \rfloor \) | Not differentiable at integer points |
\( \lceil x \rceil \) | Not differentiable at integer points |
\( |f(x)| \) | \( \displaystyle\frac{f(x)}{|f(x)|} \cdot f'(x) \), where defined |