Skip to main content
Home
Pimath

Main navigation

  • Home
User account menu
  • Log in

Breadcrumb

  1. Home

Reglas Fundamentales de Derivación

Profile picture for user Pimath
By Pimath, 17 July, 2025

Esta tabla recoge las reglas fundamentales de derivación.

Derivadas Elementales

Función \( f(x) \)Derivada \( f'(x) \)
\( c \)\( 0 \)
\( x \)\( 1 \)
\( x^n \)\( nx^{n-1} \)
\( e^x \)\( e^x \)
\( \ln(x) \)\( \displaystyle\frac{1}{x} \)
\( \sqrt{x} \)\( \displaystyle\frac{1}{2\sqrt{x}} \)
\( x^x \)\( x^x (1 + \ln x) \)
\( |x| \)\( \displaystyle\frac{x}{|x|} \), \( x \neq 0 \)
\( \ln|x| \)\( \displaystyle\frac{1}{x} \), \( x \neq 0 \)
\( \text{sgn}(x) \)\( 0 \), \( x \neq 0 \)

Reglas de Derivación

OperaciónDerivada
\( [f(x) \pm g(x)]' \)\( f'(x) \pm g'(x) \)
\( [f(x) \cdot g(x)]' \)\( f'(x)g(x) + f(x)g'(x) \)
\( \left[\displaystyle\frac{f(x)}{g(x)}\right]' \)\( \displaystyle\frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)} \)
\( [f(g(x))]' \)\( f'(g(x)) \cdot g'(x) \)

Funciones Trigonométricas

\( f(x) \)\( f'(x) \)
\( \sin(x) \)\( \cos(x) \)
\( \cos(x) \)\( -\sin(x) \)
\( \tan(x) \)\( \sec^2(x) \)
\( \cot(x) \)\( -\csc^2(x) \)
\( \sec(x) \)\( \sec(x)\tan(x) \)
\( \csc(x) \)\( -\csc(x)\cot(x) \)
\( \sin^2(x) \)\( 2\sin(x)\cos(x) \)
\( \cos^2(x) \)\( -2\cos(x)\sin(x) \)

Funciones Trigonométricas Inversas

\( f(x) \)\( f'(x) \)
\( \arcsin(x) \)\( \displaystyle\frac{1}{\sqrt{1 - x^2}} \)
\( \arccos(x) \)\( \displaystyle -\frac{1}{\sqrt{1 - x^2}} \)
\( \arctan(x) \)\( \displaystyle\frac{1}{1 + x^2} \)

Funciones Hiperbólicas

\( f(x) \)\( f'(x) \)
\( \sinh(x) \)\( \cosh(x) \)
\( \cosh(x) \)\( \sinh(x) \)
\( \tanh(x) \)\( \text{sech}^2(x) \)
\( \text{arsinh}(x) \)\( \displaystyle\frac{1}{\sqrt{x^2 + 1}} \)
\( \text{arcosh}(x) \)\( \displaystyle\frac{1}{\sqrt{x^2 - 1}} \)
\( \text{artanh}(x) \)\( \displaystyle\frac{1}{1 - x^2} \)

Exponenciales y Logaritmos

\( f(x) \)\( f'(x) \)
\( a^x \)\( a^x \ln(a) \)
\( \log_a(x) \)\( \displaystyle\frac{1}{x \ln a} \)

Funciones con Exponentes Variables

\( f(x) \)\( f'(x) \)
\( x^\alpha \)\( \alpha x^{\alpha - 1} \)
\( a^{g(x)} \)\( a^{g(x)} \cdot \ln(a) \cdot g'(x) \)
\( \ln(g(x)) \)\( \displaystyle\frac{g'(x)}{g(x)} \)
\( \ln|g(x)| \)\( \displaystyle\frac{g'(x)}{g(x)} \) con \( g(x) \neq 0 \)

Derivadas de Funciones Discontinuas o Definidas a Trozos

\( f(x) \)\( f'(x) \)
\( \lfloor x \rfloor \)No derivable en los puntos enteros
\( \lceil x \rceil \)No derivable en los puntos enteros
\( |f(x)| \)\( \displaystyle\frac{f(x)}{|f(x)|} \cdot f'(x) \), donde está definida

¡Tu feedback es importante para nosotros! Deja un comentario y ayúdanos a mejorar este contenido. ¡Gracias!

Feedback

Apóyanos con un Like:
O, comparte:

Tags

  • Análisis Matemático 1

Apóyanos con un Like:
O, comparte:

Copyright © 2025 | Pimath | All Rights Reserved